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Abstract

Recently, major progress has been made to develop computational models to predict and explain 

the mechanisms and behaviors of gene regulation. Here, we review progress on how these 

mechanisms and behaviors have been interpreted with analog models, where cell properties 

continuously modulate transcription, and digital models, where gene modulation involves discrete 

activation and inactivation events. We introduce recent experimental approaches, which measure 

these gene regulatory behaviors at single-cell and single-molecule resolution, and we discuss the 

integration of these approaches with computational models to reveal biophysical insight. By 

analyzing simple toy models in the context of existing experimental capabilities, we discuss the 

interplay between different experiments and different models to measure and interpret gene 

regulatory behaviors. Finally, we review recent successes in the development of predictive 

computational models for the control of gene regulation behaviors.
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1. Introduction

Life’s diversity requires that every gene, within the simplest virus or the most complex 

nerve tissue, must control its expression to meet fluctuating biological demands. This task 

requires modulating the timing and strength of mRNA and protein production in response to 

different environments, various developmental stages, or other cellular processes. At a more 

basic level, each gene in each cell must decide how many messenger RNAs should be 

transcribed, and when. Obviously, to fully understand or predict the regulation of 
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transcriptional kinetics is an enormous challenge, but one where single-cell experiments and 

stochastic analyses can help tremendously.

At the broadest level, gene regulation networks are described as vast collections of nodes 

connected by activating and repressive relationships [1]. When inferred from microarray [2, 

3, 4], mass spectroscopy [5, 6, 7, 8], or DNA/RNA sequencing data [9, 10], these networks 

provide a high-level logical understanding of transcriptome regulation [11, 12]. However, 

more precise measurements suggest that regulatory inputs control gene expression at finer 

resolutions than simply ‘on’ or ‘off’. For a specific gene/regulator combination, one can 

measure a gene regulation function (GRF) to describe how regulatory input levels modulate 

transcriptional output levels [13]. Although the GRF can be measured at the population level 

using microarrays, Northern blotting, RT-PCR and RNA-Seq [14], single-cell measurements 

can reveal much richer regulatory behaviors [15, 16, 17, 18, 19]. In the following sections, 

we introduce some of these experimental tools, and we discuss a couple simple 

computational models that have been used to interpret their results. We also introduce a 

couple examples where different types of experiments alternately hide or reveal interesting 

temporal, spatial or stochastic gene regulatory response fluctuations, and we suggest model-

based understanding could lead to the design of more informative experiments.

2. Single-cell Experiments

Many approaches [20, 21, 22] have been devised to uncover and quantify the temporal, 

spatial and cell-to-cell fluctuations in gene regulation at the single-cell level. The majority of 

these techniques rely upon natural or synthetic fluorescent reporters, such as genetically 

modified fluorescent proteins [23] or bioluminescent enzymes [24] as well as fluorescently 

labeled antibodies [25] and synthesized nucleic acids that hybridize to RNA [26, 27], all of 

which are measured with fluorescence microscopy, time-lapse microscopy [20, 24, 28, 29, 

30], and flow cytometry [25, 31]. Many of these approaches provide a quantitative estimate 

of single-cell concentrations, but advanced single-molecule measurements can also directly 

quantify the precise number and intracellular locations of RNA [17, 26, 27, 32], protein [23, 

33, 34] or both [28, 35]. In particular, the activation and deactivation of transcription is 

observed most directly through measurements of RNA, which can be accomplished with 

single-molecule RNA fluorescence in situ hybridization (smRNA-FISH), [17, 26, 27, 36, 37, 

38], which allows one to measure directly the number and positions of RNA in fixed cells. 

Even when gene expression varies considerably from cell to cell, measurements of hundreds 

or thousands of individual cells enables precisely repeatable quantification of informative 

gene expression distributions [17, 39].

Although smRNA-FISH enables precise spatial measurements of individual endogenous 

RNA molecules, the technique requires fixation and permeablization and cannot provide 

more than a single temporal measurement per cell. At constant induction levels, this 

precludes the possibility of dynamic data needed to understand temporal fluctuations. To 

circumvent this constraint, one can take a number of approaches. By examining different 

populations of cells at different instances in time, endogenous in situ hybridization 

approaches can capture the spatiotemporal population dynamics of developmental processes 

[40, 41] or transient population responses to perturbations [17, 36, 42]. Conversely, in vivo 
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temporal measurements can be achieved by genetic modification of the transcribed mRNA 

to include a large number of MS2 bacteriophage hairpin structures and adding constitutively 

expressed MS2 coat proteins with GFP tags [29, 43, 44]. Under these modifications, when 

the modified target mRNA is expressed, it binds with GFP tags, and its movement 

throughout the cell can be captured with fluorescence time-lapse microscopy. Although this 

technique may perturb the endogenous mRNA dynamics, it allows direct estimates of many 

of the effects of the digital gene regulation model, including exponential waiting times 

between subsequent formations of active transcription sites [29] or between transcriptional 

bursts [28], exponentially distributed existence times for active transcription sites [28, 29], 

and geometrically distributed RNA burst sizes [28]. The MS2 approach technique has been 

extended to use similar interactions with PP7 bacteriophage hairpin structures, enabling two 

color real time analyses of two mRNA, simultaneously [45, 46].

In some cases, it is also possible to observe characteristics of the digital gene expression 

model at the protein level. By replacing or fusing endogenous mRNA with the coding region 

of a fluorescent protein, one can engineer a fluorescent output for a given gene of interest 

[47]. For DNA- or membrane-bound proteins, one can image individual protein molecules, 

and for freely diffusing protein, one can deconvolve the background fluorescence and 

calibrate to estimate the number of proteins per cell volume [34, 35]. Genetic modifications 

to introduce a luciferase-based assay [24, 48] can also introduce measurable fluorescence 

reporters of gene expression at the protein level. Analyses that monitor one or more 

spectrally distinct fluorescent signals with time-lapse experiments can lead to better 

understanding of the origins of variability and the causal connections between different 

regulatory proteins [49, 50, 51]. By combining fluorescent protein fusions with smRNA-

FISH [35] or MS2-tag [28, 30] approaches, one can measure the single-cell mRNA and 

protein correlation. An interesting observation from such studies is that while the average 

mRNA and protein expression levels are correlated among different genes and different 

conditions, the single-cell numbers of mRNA and protein appear to be uncorrelated [35].

In the remainder of this article, we examine some of the computational tools and models that 

have been used to interpret, and in some cases predict, these experimental observations of 

gene regulation fluctuations from cell to cell and over time.

3. Analog and Digital Models of Gene Regulation

To introduce common gene regulatory behaviors and their interpretation, figure 1 illustrates 

two simple models of gene regulation. The ‘analog’ model allows direct, continuous tuning 

of the RNA transcription rate, whereas the ‘digital’ model has ‘off’ and ‘on’ states with 

fixed transcription rates. Where the analog model corresponds to a single gene state, the 

digital model [36, 37, 38, 52, 53] contains mutually exclusive ‘off’ and ‘on’ states between 

which genes transition with tunable rates k12 and k21 (figure 1(a)). Typically, the ‘off’ state 

has no transcription, while the ‘on’ state has a constant transcription rate, kr. For either 

model, the translation rate is assumed to be proportional to the number of mRNA, and 

degradation obeys first-order reaction kinetics. While both the analog and digital models can 

produce the same average effects of gene regulation (figure 1(b)), the digital model is 

capable of capturing a much broader range of qualitatively different regulatory behaviors 
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over time (figure 1(c)) or from cell to cell (figure 1(d–e)). When detailed single-cell 

experiments capture these qualities, the analog model breaks down, but the digital model can 

help us to link regulatory behaviors to different physical mechanisms, such as chromatin 

conformation changes [37, 54, 55], DNA loop formations [23], transcription factor binding 

configurations [24, 36, 56], formation of nuclear transcription factories [57] or other discrete 

effects.

The digital gene expression model has been analyzed with numerous computational 

methods, including kinetic Monte Carlo simulations [58], moment generating function 

approaches [52, 53, 59], random telegraph analyses [24, 37, 38], Laplace transforms [60], 

and finite state projection (FSP, [17, 61]) approaches. For the analyses in this work, we 

utilize a modification of the FSP analysis [61]. This approach enables us to solve directly for 

the joint probability distributions of gene state, mRNA level and protein level at any time t2 

given an initial distribution at a previous time t1. Using this analysis, figure 2 illustrates 

some of the most important regulatory behaviors of the models for a few different 

phenotypical cases. Figure 2(a) plots representative time-trajectories of a single-cell’s gene-

state and its mRNA and protein levels. Here, ‘on’ and ‘off’ intervals are exponentially 

distributed with means 1/k21 and 1/k12, respectively, and the number of mRNA produced per 

‘on’ interval (or burst size) is geometrically distributed with mean kr/k21 [28]. Statistics of 

cell-to-cell fluctuations are captured in figure 2(b–c), which plots the equilibrium marginal 

and joint probability distributions for mRNA and protein molecules. Each of the regulatory 

behaviors shown in figure 2 depends heavily on the relative time scales of gene transitions 

and the degradation rates of mRNA and protein (different columns of figure 2). When gene 

transitions are fast compared to mRNA degradation (left column), the mRNA trajectories 

and distributions take on the characteristics of a constitutively expressed gene and are 

indistinguishable from the analog model [16]. However, when gene transition rates are 

comparable with mRNA decay rates (middle and right column), mRNA pulsing becomes 

apparent (figure 2(a), middle and right), and mRNA distributions take on bimodal 

characteristics (figure 2(b)). However, proteins only inherit this bimodality when protein 

degradation is fast [59] (compare middle and right columns).

In many cases, RNA measurements provide quantitative insight that supports the digital 

model of gene regulation. For example, the analog model predicts mRNA to exhibit a 

Poisson distribution (figure 1(e), left), in which the variance σ2 is equal to the mean 

expression μ and the Fano factor, F = σ2/μ, is unity [62]. However, many genes exhibit 

higher Fano factors [28, 35, 37, 38], as predicted by the digital transcription model. In some 

cases, spatial information from smRNA-FISH experiments also supports the digital gene 

expression model by revealing that some cells have large groups of transcripts at 

transcription sites [32, 36] or in the nucleus, and other cells contain mostly cytoplasmic 

mRNA [37]. Such observations are also consistent with the digital model’s prediction of 

intermittent active and inactive transcriptional periods [37]. However, in contrast to direct 

RNA measurements, it is a little more difficult to discriminate between digital and analog 

gene regulatory models by monitoring long-lived protein reporters. Since protein levels 

inherit and increase the variability of mRNA [63], their variance is typically non-Poisson 

and may be bimodal even for the analog gene expression model.
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To explore differences in the statistics of mRNA and protein fluctuations and to explain the 

missing mRNA-protein correlation observed in [35], it is helpful to examine numerically the 

expected temporal single-cell fluctuations of mRNA and protein. Using FSP analyses [61] 

for the cases introduced in figure 2, we can compute the joint probability distributions of 

mRNA at time, t, and protein at time, t + τ (figures 3(b,c)). Further, we can quantify the 

cross-correlations between mRNA (m) and protein (p) for all possible values of τ. Using this 

analysis, figure 3(c) plots the cross-correlation function, Rmp(τ), defined as:

(1)

as a function of the time lag (τ > 0) or lead (τ < 0) of protein, p(t + τ), with respect to 

mRNA, m(t). Depending upon the model parameters, the magnitude of Rmp(τ) can range 

from one (perfect correlation) to zero (no correlation). A close inspection of figure 3 

provides two insights to understand the observed absence of mRNA-protein correlations at 

the single-cell level [35]. First, we note that many mRNA degrade faster (5–10 minutes) 

compared to fluorescent protein reporters (30 minutes or more) [35]. In figure 3(b,c) (middle 

column), we see that fast mRNA dynamics and slow protein dynamics strongly diminishes 

the level of mRNA-protein correlation. In this case, proteins exist long after their 

corresponding mRNA has degraded, and the instantaneous protein level depends upon a 

long time integral of the mRNA level, not the instantaneous mRNA level. Conversely, for 

mRNA with comparatively long lifetimes, instantaneous mRNA and protein levels are much 

better correlated [28] (figure 3, left and right). Second, figure 3(c) shows that the cross-

correlation function is not symmetric about τ = 0. Since protein translation lags behind 

mRNA transcription, the maximum of occurs at a positive value of τ, and the correlation 

drops off quickly as τ decreases. Although smRNA-FISH captures both nascent and mature 

mRNA [37, 36], fluorescent protein reporters capture only those proteins that have 

completed translation, folding, and chromophore oxidation. These processes take two 

minutes in vitro for the fastest available YFP variant [64] and typically 5–30 minutes or 

more for other fast-maturing fluorescent proteins [64, 65]. With such folding times, a 

snapshot of protein and mRNA levels effectively measures the cross-correlation between 

mRNA at time, t, and protein levels at the earlier time t − τm, where maturation introduces 

the apparent delay τm. Figure 3 illustrates the effect that typical maturation times (τm= 5 and 

30 minutes, respectively) have on measured correlations between mRNA and protein. 

Clearly, measurable correlations between mRNA and protein can be very sensitive to the 

fluorescent protein maturation time as well as the protein life times. To some extent, these 

time-scale concerns can be reduced through additional genetic modifications that introduce a 

luciferase-based assay [24, 48], which combines a much shorter protein lifetime with a faster 

fluorescence reporter. The time derivative of this luciferase intensity is correlated with the 

mRNA level, which allows one to infer quantitative values for the live cell mRNA bursting 

dynamics [24].

4. Discussion

With the computational and experimental tools described above, we can now discuss how 

different genes regulate their behaviors. In general, housekeeping genes exhibit fewer 
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bursting behaviors [32] and less correlation between mRNA of different types [66], both of 

which are consistent with analog models of regulation. Conversely, mRNA from stress 

response genes and temporally induced genes exhibit much greater bursting behaviors and 

are more likely to be correlated [66]. These observations argue that the main function of 

multiple gene states is to enable genes to modulate their expression in response to 

environmental and intracellular cues. In principle, such regulation could be achieved through 

any positive or negative modification of one or more rate parameter. For example, reactions 

could correspond to the direct binding of activators or repressors, respectively, in which case 

the rates k12 or k21 would increase with the transcription factor concentration. Indirectly, 

regulators could inhibit transitions by sequestering or modifying other bound or unbound 

transcription factors. Alternatively, regulators could stabilize or destabilize mRNA or 

proteins to modify their effective degradation rates. Additional effects could correspond to 

chromatin modifications [38, 54, 55], polymerase recruitment [41, 57], DNA loop 

formations [23], or some other gene regulatory process. Because certain genes may be 

controlled by the outputs of other genes or signaling processes, regulatory inputs themselves 

are often dynamic signals with their own frequency and amplitude modulations [67, 68].

Figure 4 illustrates how different gene regulatory mechanisms would respond to temporal 

changes in an inducer, x(t), such as a varying transcription factor, chromatin modifier or 

signal transduction protein concentration. We consider four possible models (figure 4(a)), 

including the analog model (k̂r = kr(x+cx)/(c+x), black) and three digital models, where a 

single reaction is affected by the inducer according to: k̂12 = k12x (gold), k2̂1 = k21/x 

(magenta), or k̂r = kr(x + cx)/(c + x) (cyan). Here c = k21/k12, and all parameters are chosen 

such that all four models predict the same equilibrium average for any finite x > 0. Each 

model is subjected to a moderate (10 fold) and large (1000 fold) step increases in inducer as 

shown in figure 4(b), left and right respectively. The corresponding dynamics of the average 

regulatory behaviors are shown in figure 4(c). Representative mRNA distributions before, 

during, and after the induction response are shown in figure 4(d), and effects on the Fano 

factor are shown in figure 4(e) and 4(f). Despite identical steady-state averages, the models 

produce different temporal dynamics and/or cell-to-cell fluctuations. Figure 4 shows that the 

three digital models predict different dynamics (compare gold, magenta and cyan lines), but 

the average dynamics of the analog model and the digital kr modulation model are identical 

(compare gold and black lines). At the low induction level, x = 1, all digital models predict 

the same steady state distribution (see figure 4(d) at 0 hr), but these distributions are distinct 

at moderate induction levels (see figure 4(d), left at 10 hr). At very high induction levels, 

one can make some interesting comparisons between the analog model and the different 

versions of the digital model (see figure (b–f) right). First, when subjected to high induction, 

the analog model and the k12-modulated models are indistinguishable in both average 

dynamics (see figure 4(c) right, where the black and magenta lines overlap) and induced 

single-cell distributions (see figure 4(d) right at 10 hr). Second, the analog and k21-

modulated models match the high-induction equilibrium distributions (see figure 4(c) right 

at 10 hr, where the black and cyan lines overlap), but not the transient dynamics (see figure 

4(b) right, where the black and cyan lines are distinct). Finally, the analog and kr-modulated 

model match only the average transient dynamics (see figure 4(c), where the black and gold 

lines overlap), but not the equilibrium single-cell distributions (see figure 4(d), where the 
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black and gold lines are distinct). In other words, at high induction one can distinguish the 

kr-, k21 and k12-modulated models from the analog model, but to do so requires different 

types of data (i.e., distributions for kr, transients for k21 and both simultaneously for k12). 

Since our intention is to probe understanding for the mechanisms of gene regulation, the fact 

that different hypotheses require different experiments suggests that experiments and models 

should be designed in concert with one another.

Because different models predict different dynamics and/or cell-to-cell fluctuations, it 

follows that well-chosen single-cell measurements at different conditions or times can help 

distinguish between competing mechanisms [17, 23, 37, 38, 54, 55, 69]. In the case of 

induction of PHO5 in budding yeast, the relative intrinsic noise at high expression levels is 

reduced [54, 55]. This trend was attributed to slow gene activation, and modulation of the 

gene transitions [54, 55], a trend that is similar to that plotted by the gold and cyan curves of 

figure 4(f). smRNA-FISH analysis of the tet promoter in mammalian cells shows that 

transcriptional activators have strong effects specifically on mRNA burst size through k21 or 

kr, but not on the frequency controlled by k12 [37, 38]. Similar observations made for the lac 

operon in E. coli showed that lengths of bursts and not the frequencies were controlled by 

inducer concentrations [23]. This trend, in which the reaction k21 is controlled by the 

inducer, remained consistent for an additional 20 genes in E. coli as measured with smRNA-

FISH and MS2-tag analyses [38]. However, the trend of k21-modulated control is not 

absolute, and modulation of the parameter k12 has been shown to be consistent with other 

gene regulatory systems [36]. At present, it is not clear which biological circumstances 

would call for one mechanism over the other. One could speculate that since k12-modulation 

allows for faster and less variable responses to extracellular cues, it may be an advantageous 

strategy for tightly regulated genes in intercellular signaling or developmental pathways 

within multi-cellular organisms. On the other hand, less-sensitive k21-modulated control 

may be better suited to reject fast environmental fluctuations and enable population diversity 

for single-cell organisms in changing environments.

Furthermore, although the two-state model quantitatively captures bursting regulatory 

behavior for many gene regulatory processes, it remains an approximation of more 

complicated physical systems. In some cases, dynamic single-cell measurements can reveal 

more aspects of this complexity [17, 23, 24, 29, 44]. In the social amoeba dictyostelium, 

induction response of the discoidin Ia gene exhibits responding and non-responding 

phenotypes, in which responding cells are characteristic of a two-state system, and non-

responding phenotypes exhibit slow transitions characteristic of an additional ‘off’ state 

[29]. Non-exponentially distributed times between activation events have also suggested an 

additional inactive state for genes in mammalian cells [24]. In E. coli, combinations of 

inactive periods, frequent small bursts, and rare large bursts suggest three different states 

corresponding to ‘off’, ‘leaky’ and ‘on’ for lac expression [23]. RNA-FISH observations for 

many genes in drosophilla embryos also suggest common models of ‘off’, ‘poised-

polymerase’ and ‘on’ states, in which certain genes containing stalled Pol II preference the 

‘poised’ state and respond faster and less variably than those without [41]. Furthermore, the 

loading of Pol II can vary between multiple different ON states [44]. In each of these 
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studies, insight beyond the two-state model requires dynamic data, either from live cell 

tracking or from multiple snapshots of fixed cells during a dynamic response [17].

The merger of experimental and computational analyses enables systematic testing and 

refinement of understanding for gene regulation. Here we have focused on how single-cell 

approaches and dynamic measurements can reveal many qualitative features in which this 

regulation behaves as one predicts using a digital model. In time, these techniques will also 

enable quantitative predictions for regulatory behaviors in new and untested conditions, such 

as new experimental conditions or for new regulatory constructs [17]. Such predictive 

capabilities will eventually enable more precise analysis and manipulation of biomedical 

processes as well as more reliable tools to design synthetic constructs to meet 

bioengineering challenges.
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Figure 1. Analog and Digital Models of Gene Regulation
(a) Schematics of analog and digital regulation models. (b) Both models may yield 

equivalent average (bulk) mRNA changes versus inducer level. (c) Single-cell temporal 

trajectories for mRNA populations at low medium and high induction levels. (d) Single-cell 

behaviors at different expression levels: in the analog model, expression level is modulated 

in every cell; in the digital model, the number of responding cells may also be modulated. 

(e) Probability distributions for the mRNA populations at different inducer concentrations.
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Figure 2. Fluctuations of the Digital Gene Expression Model
To illustrate different regulatory behaviors of the digital gene expression model, three 

parameter regimes with different relative speeds of gene state, mRNA and protein 

fluctuations are examined. Left: {k12 = k21 = 0.33 min−1, γr = 0.067 min−1, kr = 1 min−1, γp 

= 0.1 min−1, kp = 0.5 min−1}. Middle: {k12 = k21 = 0.0167 min−1, γr = 0.067 min−1, kr = 1 

min−1, γp = 0.1 min−1, kp = 0.5 min−1} Right: {k12 = k21 = 0.1 min−1, γr = 1 min−1, kr = 15 

min−1, γp = 0.011 min−1, kp = 0.056 min−1} These parameter changes lead to distinctly 

different regulatory behaviors at several levels: (a) Temporal trajectories for gene state 

(green), mRNA numbers (red), and protein numbers (blue). (b) Marginal mRNA and protein 

distributions at equilibrium. (c) Joint mRNA and protein distributions at equilibrium.
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Figure 3. Cross-Correlations of the Digital Model
Time scales of gene, mRNA and protein fluctuations have strong impacts on temporal 

correlations and sensitivity to measurement delays. Parameters are as given in figure 2. (a) 

Simple model of gene transcription, mRNA translation and protein maturation with fixed 

time delay (τm). (b) Model predicted joint probability distribution of mRNA and protein 

assuming a fast protein maturation time of τm = 5 minutes (top row) and a moderate protein 

maturation time of τm = 30 minutes (bottom row). CC corresponds to the equilibrium cross-

correlation of mRNA at time t and protein at time t − τm. (c) Equilibrium cross-correlation 

between mRNA and protein, Rmp(τ), versus time delay, τ. Vertical lines represent 

maturation times τm of 5 (solid) and 30 (dashed) minutes.
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Figure 4. Effects of Induction Changes
(a) Induction levels, x(t), affect the analog model according to k̂r = kr(x + cx)/(c + x) (black), 

and the digital model according to k̂12 = k12x (magenta), k̂21 = k21/x (cyan), or k̂r = kr(x + 

cx)/(c + x) (gold). (b) Inducer level, x(t), undergoes a step increase at t = 0 from x = 1 to 

either x = 10 (left) or x = 1000 (right). (c) Average mRNA dynamics for each model. (d) 

Distributions before, during, and after induction change. (e,f) Fano factor as a function of 

time (e) and mean expression (f). For the analog model, F (t) = 1, and for the digital models, 

F (t) > 1. Parameters used for this illustration are: {kr = 1 min−1, k12 = 0.0067 min−1, k21 = 

0.033 min−1, γ = 0.067 min−1, c = k21/k12}.s
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